

Assessing the Role of Landuse Landcover Transition in Mitigating Heat Risk A Study on Urban Area of Dhaka North City Corporation

Mushfik Jalal

Research Associate

BEAM Research Centre

Glasgow, United Kingdom

Email: mjalal201@caledonian.ac.uk

Background

"Any hard-won victories over climate change on a global scale could be wiped out by the effects of uncontrolled urban heat islands" (Dutch Economist Richard Toll)

The **urban population of Bangladesh** has increased by nearly **10 times** since independence, **1/3** of which has taken place in **Dhaka city** (The Daily Sun, 2018)

The city has witnessed **a rise in temperature** of around **3** °C in the last 20 years (The Daily Star, 2022)

The increase in annual daytime temperature in Dhaka over the last 20 years is 2.74 °C (Dewan et. al., 2021)

Green space and water bodies have been diminishing in expense of built-up areas in every decade at **a rate of 40%** since 1978 (Moniruzzaman et. al., 2021).

It is **predicted** that there will be a **13% (summer) & 20% (winter)** increase in **LST by 2030** across **Dhaka** Metropolitan area (Faisal et al., 2021)

"The aim of this research is to find the **pattern** of urban growth **factors** contributing in **increase** of **SUHI** and how the **factors** can **be utilized** to **reduce** the **Heat risk**"

Objectives

To identify LULC transition pattern causes highest level of surface temperature increase

To find relative contribution of socio-economic and physical factors influencing Surface Heat intensity

To predict location of susceptible land transformation causes rapid surface heat increase.

Key Findings in Literature

- □ To achieve heat sensitive urban development, **Landuse zoning** and **Decentralization** is a key tool of **Mitigation** (Pal & Ziaul, 2017).
- □ LULC is considered as a major driver for LST change, and hence the interrelation between them has been a key area of UHI research (Suriana et. al., 2000; Ke et. al., 2014; Tran et al., 2017).
- □ Although **Physical factors** have dynamic **effect** on **UHI pattern** (Xiong et al., 2012), however, **Socio-economic factors** explain approximately 10 % to 20 % of the variances of UHI effect (Ying et. al., 2020).
- A high degree of agreement is established between satellite retrieved and ground based LST observations (Rigo et. al., 2006; Sharma & Joshi, 2014; Yuan and Bauer, 2006; Mallick et. al., 2013).

Study Area

- Dhaka is a historical capital city of Bangladesh with Primacy status
- 9th largest Metropolitan cities in the world (UN World Cities Report, 2018)
- Contributing **40%** of country's total **GDP**
- Economic, Administrative, Cultural & Transport hub of the country

Population Growth in Dhaka Megacity (1608-2011). Source: BBS 1977; 1984; 1991; 1997; 2003; Taylor 1840; D'oyly 1824; Siddiqui 2000.

Study Area

In 2011, The **Dhaka City is divided** into two administrative area such as Dhaka North City Corporation (DNCC) and Dhaka South City Corporation (DSCC)

DNCC was extended in 2016 and new non-urban areas have been included

This study is based on **urban areas** (blue) **of DNCC**

Study Area

Urban area DNCC comprises of 18 Thanas including a total of 36 wards

SL	Thana	Population Density (sq km)
1	Adabor	63747
2	Badda	15640
3	Biman Bandar Thana	687
4	Cantonment	13954
5	Darus Salam	48371
6	Gulshan	29187
7	Kafrul	53036
8	Khilkhet	16245
9	Mirpur	77940
10	Mohammadpur	43237
11	Pallabi	59863
12	Ramna	54911
13	Rampura	83925
14	Shah Ali	29997
15	Sher-E-Bangla Nagar	30915
16	Tejgaon	58368
17	Tejgaon Industrial Area	30761
18	Uttara	20101

Master in Urban Climate & Sustainabilit

(BBS, 2011)

(RAJUK, 2021)

Theme	Data	Source
Climatic	Land Surface Temperature (LST)	Landsat 5 TM (2001, 2011) and Landsat 8 OLI (2021) of USGS
Landuse Landcover (LULC)	Built-up, Waterbody, Vegetation & Bare land class	Landsat 5 TM (2001, 2011) and Landsat 8 OLI (2021) of USGS
Physical	GIS shapefile of Building, Waterbody and Road	RAJUK (Capital Development Authority)
	Vegetation Indice (NDVI)	Landsat 8 OLI (2021) of USGS
Socio-economic	Population, Decadal Growth Rate, Building Material, Electricity consumption	Bangladesh Bureau of Statistics, 2001 & 2011
	Location of Services & Facility	RAJUK (Capital Development Authority)
Topography	Digital Elevation Model (DEM)	RAJUK (Capital Development Authority)

Method

Land Surface Temperature (LST)

Below equation is used to determine LST for all the three-year study

(Weng, Lu, & Schubring, 2004)

$$LST = \frac{T_i}{1 + \left(\lambda \times \frac{T_i}{\rho}\right) \times \ln(\varepsilon)}$$

T*i* = sensor's brightness temperature, λ = emitted radiance's wavelength, \mathcal{E} = spectral emissivity of the land surface, $\rho = hc / \sigma = 1.438 \times 10 - 2$ mk, where h

and c indicates Plank's constant and velocity of light respectively. σ is the Boltzmann constant.

To reduce the effect of seasonality and temporal variation, LST has been normalized and represented as an annual Normalized LST (NLST) (Rasul et. al., 2011)

$$ST_{NRS} = \frac{(LST)}{\sqrt{\sum (LST)^2}}$$

LULC Classification 2001-2011-2021

- Landcover classification follows **Anderson level I** classification system dividing the city into **four LULC classes** (Anderson et. al., 1976)
- Unsupervised Classification has been conducted using ISODATA clustering method (ERDAS Imagine Software)
- Classified based on shape, size, texture, tone and pattern of group of pixels

Method

SL	LULC class	Description
1	Built-up	All types of manmade structures:
	area	residential, industrial, commercial
		and services; transportation and
		utilities; mixed urban or built-up
2	Waterbody	River, permanent open water, lakes,
		ponds and reservoirs; Permanent and
		seasonal wetlands, marshy land, rills
		and gully, swamps
3	Vegetation	Deciduous forest, mixed forest lands,
		palms, conifer, scrub and others Crop
		fields, fallow lands and vegetable
		lands
4	Bare land	Exposed soils, sand fill, landfill sites,
		and areas of active excavation

(Mamun et. al., 2013)

LULC Projection for 2031 & 2041

- To produce predicted map of LULC for the year of 2031 and 2041, Cellular Automata – Markov (**CA-Markov**) model has been used
- LULC maps of previous years such as 2001 and 2011 have been used as **source data** (GIS) for the model
- Using the **input parameters**, the predicted LULC map has been generated for the year of 2031 and 2041.

Method

SL	Parameter	Description	Justification of assumption
1	Distance	Existing trend and	The area which is spatially closer
	from new	location of built-up	to recently developed built-up
	built-up	class in 2021 LULC	are more potential for future
	area	class.	built-up class.
2	Road	Existing location of	There is more possibility of
		major roads	urban area grows which is closer
			to major roads
3	Surface	High and low	Urban areas tend to be
	Elevation	surface of land	developed on areas with higher
			surface elevation
4	Slope	Flat and uneven	The possibility of built-up growth
		surface	higher in comparatively flat land.
5	Transition	Pattern of Transition	The spatial pattern of built-up
	sub-model	from	growth will follow the same
		other(waterbody/ve	trend of growth as occurred in
		getation/bare land)	previous years unless major
		to built-up class	intervention takes place.
			(Kafy et. al., 2021)

Validation & Accuracy Assessment

Accuracy Assessment of LULC Classification

- Using **Error/Confusion Matrix**, accuracy of LULC classification has been assessed
- Above **70%** is considered as acceptable for Overall, User & Producer Accuracy
- A range between **0.40 and 0.85** is considered as acceptable for Kappa Coefficient

(Basu & Das, 2021)

$$Overall \ accuracy = \frac{\text{Total number of corrected classified pixels (diagonal)}{\text{total number of reference pixels}} *100$$

$$User \ Accuracy = \frac{\text{number of correctly classified pixels in each catagory (diagonal)}{\text{total number of reference pixels in each category (row total)}} *100$$

$$Producer \ Accuracy = \frac{\text{number of correctly classified pixelxs in each category (diagonal)}{\text{total number of reference pixels in each category (column total)}} *100$$

$$Kappa \ Coefficient \ (T) = \frac{\text{Total number of Sample*Total Number of Corrected Sample} - \sum (col.tot*row tot)}{(\text{Total number of Sample})^2 - \sum (col.tot*row tot)} *100$$

Validation of LULC Projection

The projected LULC map (including four LULC class) has been validated using **Chi Square test** (Rahaman et. al., 2022; Kumar et. al., 2013)

 $X^2 = \sum (O - E)^2 / E$

X²= Chi Square Value
O = Area of Classified (observed) land class
E = Area of Projected LULC class)
Level of Significance at 0.05 with Degree of
Freedom of 3

LST Validation

- The study has limitation of collecting in-situ measurement and depends on results from previous literatures regarding integrity of Landsat Satellite Thermal Sensor
- A high degree of agreement between the satellite retrieved surface temperature and the ground based LST observations has been established in several research (Sharma & Joshi, 2014; Yuan and Bauer, 2006; Mallick et. al., 2013)
- Although, Satellite derived long wave upward radiation of Landsat has a bias of 1.9 Kelvin and RMSE of 1.2 Kelvin (Rigo et. al., 2006)

Socio-economic Variables

Population Density

Density of Community Facilities

% of Affordable Housing

Single Child

(Source: Parsaee et. al., 2019; Magli et.al, 2015; Jusuf et al., 2007; Shahmohamadi et al., 2010)

Building Density

		40 story Citicorp	
		10-20 story	
1 story	4 story		

Waterbody Density

Sky View Factor (SVF)

Physical Variables

Vegetation Condition

Building Height

(Source: Oke, et al., 2017; Gunawardena et al., 2017; Dare, 2005)

Socio-economic & Physical Index

Socio-economic and physical index of respective Thana has been calculated using existing parameter value and weight of each variable of both factors, using below equation (Larsson, 2000)

Index of Factors, $F = \sum (Wi \times Vi)$

Wi = Weight of Variable i; Vi = Value of Variable i

Weight has been determined by concentration ratio of correlation between mean NLST change and all the variables of

socio-economic & physical factors within respective Thana.

Wi = Ci / Tc

(Ci = Correlation value between variable i and mean NLST change;

Tc = Total of correlation values of all variables

Method

Socio-economic & Physical Index

To bring all the variables into a common scale of measurement, minimum maximum standardizing method has been applied (Han et. al., 2012) ranging from 1 to 100.

$$v'_i = \frac{v_i - \min_A}{\max_A - \min_A} (new_max_A - new_min_A) + new_min_A.$$

v'i = Transformed value, vi = Input, $min_A = minimum$ value of original dataset, $max_A = maximum$ value of original dataset, $new_min_A = minimum$ value of transformed dataset, $max_A = maximum$ value of transformed dataset.

LULC Transition

Spatio-temporal Transition of LULC (2001-2021)

- **Built up** class comprises of lion's share of total land with **21.13%** rate of change between 2001-2021
- Waterbody has declined more than double during the time period, followed by vegetation & baren land with a -42.49% & -27.70% rate of change

N

LULC Transition

Waterbody replaced by built-up (2001-2021)

2001

2021

(Source: Google Earth Pro; Paul et. al., 2019; Faisal et. al., 2021; Bangla Tribune)

Mean NLST Increase (2001-2021) and Spatial Distribution

PERCENTAGE OF AREA OF LST CHANGE

Decrease High Increase ■ Decrease ■ Increase ■ Stable Low Increase Moderate Increase PERCENTAGE OF LST INCREASE LEVEL (2001-21) No Change Moderate 12% Increase 88% 14% 0% **High Increase** Low Increase 85%

Increase of Surface

Temperature

Class_Heat_Diff

N

Pattern of LULC Transition

Pattern of LULC Transition in High-moderate Heat Increase Zone

- Areas occupied by mainly built-up types consistently over the three decades has higher influence in increasing surface Temperature
- Areas where built-up class formed subsequently during both decades of 2011 and 2021, shows a cumulative increasing pattern of Surface Temperature

Transition Category	Phases	of Built-up tran	sition	Percentag	se of
	2001	2011	2021	Area	
1 st Order Urban	Built-up/ Bare land	Built-up/ Bare land	Built-up/ Bare land	54%	
2 nd Order Urban	Vegetation/ Waterbody	Built-up/ Bare land	Built-up/ Bare land	21%	87%
3 rd Order Urban	Vegetation/ Waterbody	Vegetation/ Waterbody	Built-up/ Bare land	12%	
Other	Any	Any	Any	13%	

If an area is occupied with built-up/bare formation for long periods of time, it is highly susceptible to heat increase.

Relative Influence of Factors

Composite Scenario of Socio-economic & Physical Index

- Moran's Autocorrelation finds the city has a random socioeconomic and physical pattern, **not clustered**
- Pearson's correlation shows a weak positive correlation (0.18)
- Neither Intra nor Inter relationship within and between two types of factors

Selection of Heat Center Zones

• Quartile of mean NLST change value determines Heat Center Zones (HCZ)

SL	Name of Thana	Socio- economic index	Physical index	Mean NLST change	Quartile of mean NLST change
1	Adabor	66.86	22.73	100.00	4th
2	Darus Salam	12.89	68.58	63.22	4th
3	Mohammadpur	24.91	57.02	62.06	4th
4	Khilkhet	32.08	44.27	61.19	4th

4 HCZ have been identified

Relative Influence of Factors

Pattern of Contribution by Factors on Heat Center Zones

- Surface heat is less with simultaneous decreasing trend of socio-economic factor and increasing trend of physical factor
- Areas with less discrepancy between both factor shows comparatively less intensity of temperature increase

A balance between both factors is necessary to minimize the increase of Heat Risk (a) Relative Importance of Socio-economic & Physical Factors

Socio-economic Factor

Pattern of Contribution by Factors on Heat Center Zones

• A gradual decrease in surface heat with increasing influence of negative factors

Need of Efficient Utilization of Negative Factors in reducing the surface heat intensity

LULC Prediction

Growth of LULC Susceptible to Heat Increase

Percentage of area of LULC class in 2031 and 2041

% of Area by Urban Order Categories

Challenges

Future Transformation of Cooling Factors by Heating Factors

• A major transformation will happen by 2031

The areas of such land transformation should be tackled immediately

Challenges

Spatial Dynamics of Factor Influence

Status of Socio-economic and Physical Profile

Socio-economic factor Physical factor

Addressing the dynamics of factors and varying level of variables

Temporal Impact of Spatial Transformation

Component 1: Priority Areas of Action

Area Coverage Map by Transition of Urban Order

Component 2: Capacity of Resources

- The analysis finds that physical features with negative effect (leverage mitigation tools) strongly contributes to surface heat reduction
- Area specific strategies should be undertaken following either conservation or optimization of leverage mitigation resources (Waterbody, Vegetation & SVF)
- Readiness Map support decision makers by indicating level of capacity of an area to cope with further Heat Sensitive Development

ither conservation bdy, Vegetation &

A Master in Urban Climate & Sustainab

A strategic utilisation of such resources as a leverage mitigation Notes will be more effective, rather than general consideration

Heat Risk Reduction Tool

Heat Mitigation Readiness Map of DNCC

Component 3: Factor Oriented Strategy

Further area development strategies should be directed to the equilibrium point of physical and socio-economic sectors

Point of Sectoral

Equilibrium

Practical Implication

- Section 4.5.3 of Detail Area Plan (DAP) of Dhaka promotes Heat Sensitive Landuse Plan
- The Findings and Proposed Mitigation Strategies directly support Local Government (DNCC) by providing respective Administrative Area Profile associated with SUHI
- This study demonstrates the need for density zoning, height zoning, restoration of canals, establishing green space

Practical Implication

Low Socio-eco	nomic & High Physical	н	ligh Socio-econo	mic & High Physica
Biman Bandar T	hana			
Uttara Bad	Gulshan da Shah Ali Kafrul		Ramna	
Dar	us Calam			Rampura
Dai	us salalli	Pallabi		
	Mohammadpur			
	Khiłkhętarne	Mirpur		
	Cantonne	Tejgao	n	
Tejgaon Industr	ial		Adabor	
Area			Addbol	
	Sher-E-Bangla Nagar			

Area Wise Heat Risk Profile

Thank You

